
1

Introduction

The relationship between programs and formal languages provides an example of the impa
t

of theory on pra
ti
e. Uses of formal theory in
lude the following:

• lexi
al and parsing stages of
ompiler
onstru
tion

• use of regular expressions in text editors

• state-
harts in obje
t-oriented modeling

•
ir
uit-design

• DNA and protein sequen
e mat
hing

On the other hand, theory a
ts also as an \early warning system" by providing a s
ien
e

of the impossible:

• what should not be attempted be
ause it is impossible (or provably too
ostly)

A fundamental question in
omputing is whether there exist tasks/problems that
annot

be solved algorithmi
ally and, if yes, whi
h tasks are algorithmi
ally solvable and whi
h are

not. In fa
t, it
an be established that the number of di�erent
omputing problems is larger

than the number of all possible programs (in some programming language su
h as Java or

C), whi
h means that there must exist problems that are not solvable by any program (or

algorithm).

Note that the number of programs is in�nite, and to show that the number of
omputing

problems is larger, we need to
ompare the sizes of di�erent in�nite numbers.

In this
ourse we use a di�erent approa
h. Using a te
hnique
alled diagonalization we

establish that
ertain spe
i�
 (and \useful")
omputing problems
annot be solved by any

CISC/CMPE 223, Winter 2018, Alphabets, strings and languages 2

program written in the language C. The most well-known one is the so
alled halting problem

that asks whether an arbitrary program given as input terminates.

Example. A program with behavior as depi
ted in Figure 1 does not exist!

TESTING
PROGRAM

Input program

YES, if the input program
always terminates

NO, if the input program
sometimes doesn’t terminate

TERMINATION

Figure 1: Example of an un
omputable problem.

However, having an algorithm A for a
omputing problem P does not mean that P is

solvable in pra
ti
e. It may be the
ase that for inputs of moderate size A would need more

time than the age of the universe.

A
oarse
lassi�
ation of problems/fun
tions:

1. Non-
omputable (that is, impossible to solve using an algorithm/a
omputer)

2. Possible{with{unlimited{resour
es BUT impossible{with{limited{resour
es

3. Possible{with{limited{resour
es

Typi
al questions we want to answer:

• Program existen
e: Does there exist a program for a given problem (or fun
tion)?

• Software spe
i�
ation: How should programs be spe
i�ed?

• Software validation: Is a given program
orre
t?

CISC/CMPE 223, Winter 2018, Alphabets, strings and languages 3

• Software
onstru
tion: How is a
orre
t program obtained?

• Semanti
s: What does a given program do? (this is related to
orre
tness)

• EÆ
ien
y: Is there a more eÆ
ient (faster) program for the given problem?

• Hardware
omparison: Is one ma
hine more powerful than another one?

Given a programming problem it is easier to
onvin
e someone that there is a program

whi
h solves the problem (if one exists) than to
onvin
e someone that there is no program

for the problem (if a program does not exist). In the former
ase it is suÆ
ient to give the

program and, in fa
t, usually it is suÆ
ient to just outline the solution informally, or in

pseudo
ode (if the purpose is just to
onvin
e the reader that a program exists).

Example. A program to
ompute the fun
tion f(n) = n2.

On the other hand, if we want to show that a program for the given problem does not

exist we need to show that none of the in�nitely many possible programs solves the given

problem (or
omputes a given fun
tion).

In order to be able to deal with negative results of this kind, we need to be pre
ise about

what
onstitutes a legal program! (or a legal algorithm)

Using a more pra
ti
al perspe
tive, a problem may be \un
omputable" also due to other

types of reasons, for example, predi
ting the weather for a month in advan
e is impossible

be
ause the required input would be \in�nite".

Instead of
onsidering general algorithms1, we start here with a simpler problem:

• test whether arbitrary input strings (= sequen
es of symbols)
an be mat
hed by a

given pattern.

1The general limits of algorithmi

omputability will be dis
ussed in the last part of the
ourse.

CISC/CMPE 223, Winter 2018, Alphabets, strings and languages 4

Spe
ial notation and implementation te
hniques have been developed to spe
ify and

re
ognize su
h patterns:

• state-transition diagrams (automata): simple simulated ma
hines

• regular expressions: rules for building patterns

• grammars: rules for generating patterns

Alphabets, strings and languages

This material is from Chapter 7 in the textbook.

• An alphabet is a �nite, nonempty set of elements. The elements of the alphabet are

alled symbols (or tokens,
hara
ters).

• A string over an alphabet � is a �nite sequen
e of symbols of �. (Strings are sometimes

alled also words.)

• A language over � is a set of strings over �.

Examples.

1. English alphabet {a, b, c, d, . . . , z}

Strings:
at, dog, mouse, xzrbstuph, . . .

Language: the set of all
orre
t English senten
es

| not pre
isely de�ned . . .

2. Alphabet: {a, b}

Strings: ε, a, b, ab, ba, aa, bb, aaa, . . .

CISC/CMPE 223, Winter 2018, Alphabets, strings and languages 5

Language: {aibi | i ≥ 0}

= {ε, ab, aabb, aaabbb, . . .}

3. Alphabet: Java reserved words and identi�ers

Example string: a Java program

Language: the set of all Java programs

We use the following de�nitions:

• The empty string is denoted ε.

ε is a string over any alphabet.

• The length of a string is the number of o

urren
es of symbols in it. The length of a

string s is denoted |s|.

Examples:

– The length of ε is 0, that is, |ε| = 0.

– The length of the string bccb is 4, that is, |bccb| = 4.

• The
on
atenation of strings x and y is denoted xy. It is the string obtained by

appending y to x.

Examples: If x = abc and y = de, then xy = abcde and yx = deabc.

Note that ε a
ts as an identity for string
on
atenation: xε = εx = x for all strings x,

in parti
ular, εε = ε.

Sin
e
on
atenation is asso
iative we do not need to use parentheses:

for all strings x, y, z we have x(yz) = (xy)z. How would you prove this?

• If x is a string, xn denotes the
on
atenation of n
opies of x (power of a string). Here

n ≥ 0.

Indu
tive de�nition:

CISC/CMPE 223, Winter 2018, Alphabets, strings and languages 6

1. x0 = ε

2. xi+1 = xxi, for i ≥ 0.

Example.

(abc)0 = ε

(abc)3 = abcabcabc

• If s = xy, we say that x is a pre�x of s and y is a suÆx of s. If s = xyz, we say that

y is a substring of s. Note that here x and/or z may be the empty string.

Examples:

1. ab is a pre�x of aba

2. ba is a suÆx of aba

3. ε is a pre�x/suÆx/substring of any string

4. a string is always a pre�x/suÆx/substring of itself

5. What are the substrings of cbc?

Formal languages

A formal language has to be pre
isely de�ned, the word formal refers to the fa
t that we

have a pre
ise set of rules whi
h tell us exa
tly whi
h strings are in the language (respe
tively,

are not in the language).

• A �nite language
an (at least in prin
iple) be de�ned by listing all strings in it.

Example: {00, 01, 10, 11}

• In�nite languages
an be de�ned by giving some
ondition that exa
tly
hara
terizes

the strings in the language.

CISC/CMPE 223, Winter 2018, Alphabets, strings and languages 7

Example.

{0n | n ≥ 0}

{0n1n | n ≥ 1}

Note that ∅ (the empty set) is a language over any alphabet �. Also {ε} (the language

having only the string ε) is a language over any alphabet �. It is important to remember

that ∅ 6= {ε}. Why?

We
an de�ne new languages from \simpler" ones using operations on languages. Three

important operations are

• union

•
on
atenation

•
losure

Later we will see that all regular languages
an be built from elements of �, the empty

string ε and the empty set ∅ using these operations.

Union

If R and S are languages over �, their union is denoted R + S. It
onsists of all strings

that are in R or in S. (Thus R + S is just a di�erent notation for the union of sets, R∪S.)

Con
atenation

If R and S are languages, their
on
atenation is de�ned as

R · S = {rs | r ∈ R, s ∈ S},

usually written simply as RS.

Examples.

CISC/CMPE 223, Winter 2018, Alphabets, strings and languages 8

If R = {a, ab}, S = {bc, c}, what is their
on
atenation RS? Note: the
on
atenation

onsists of 3 di�erent strings.

If R1 = {a, ε} and S1 = {ab, b}, what is R1S1?

What are the following languages:

∅ ·R = ?

{ε} ·R = ?

{ε} · ∅ = ?

Closure of languages

The set of all strings over alphabet � is denoted �∗. This operation
an be extended for

any language S:

S∗

= {s1 · . . . · sn | si ∈ S, i = 1, . . . , n, n ≥ 0}

= {ε}+ S + S2
+ S3

+ . . .

Example. Let S = {01, 1}. Then

S0 = {ε}

S1 = S = {01, 1}

S2 = {0101, 011, 101, 11}

S∗ = {ε, 1, 01, 11, 011, 101, 111, 0101, . . .}

We denote also

S+
= {s1 · . . . · sn | si ∈ S, i = 1, . . . , n, n ≥ 1}

= S + S2
+ S3

+ . . .

CISC/CMPE 223, Winter 2018, Alphabets, strings and languages 9

Note that S∗ = S+ + {ε} for any language S.

Definition. A language S over alphabet � is said to be regular if S
an be de�ned from

elements of �, the empty string ε, and ∅ using the operations union,
on
atenation and

losure. The des
ription of the language S in this form is
alled a regular expression for S.

In parti
ular, all �nite languages are regular. Why?

As we will see, the regular languages have \ni
e" properties and
an be easily imple-

mented. However, regular languages form only a \small" family of languages and we will

develop te
hniques for showing that a language is not regular.

Application: Sequen
e mat
hing problem

Ea
h DNA mole
ule is
omposed of two strands that are made up of a sequen
e of

nu
leotides. Ea
h nu
leotide has one of four bases, represented by symbols A, T, C, G (and

other parts). Proteins are large mole
ules that are
omposed of a sequen
e of amino a
ids.

There are 20 amino a
ids that o

ur in proteins, denoted by standard one-letter symbols.

In this way, DNA or protein mole
ules
an be represented as strings. Analyzing DNA or

protein sequen
es
an help to determine whi
h fun
tion they perform, or what parts of the

sequen
e are important for a parti
ular fun
tion. Comparing di�erent DNA sequen
es tells

us whi
h organisms are related.

Related sequen
es are not ne
essarily identi
al. When
omparing DNA or protein se-

quen
es we want to align them in a way that minimizes some type of distan
e between the

sequen
es.

Regular expressions are used to spe
ify patterns that des
ribe a related set of strings

(sequen
es). In this way we
an
ompare the pattern to an individual sequen
e or to a

database of sequen
es to �nd good mat
hes. The appli
ations often use extended regular

expressions that allow operations other than union,
on
atenation and
losure. (Examples

in
lass.)

CISC/CMPE 223, Winter 2018, Alphabets, strings and languages 10

The tools used to solve sequen
e mat
hing problems typi
ally involve also finite state

machines that are dis
ussed in out next topi
. The BLAST family of sear
h engines use

heuristi
 te
hniques to build a large deterministic finite automaton that, for a given query

string, �nds from a database of known sequen
es the most
losely related ones.

